Klotho prevents renal calcium loss.
نویسندگان
چکیده
Disturbed calcium (Ca(2+)) homeostasis, which is implicit to the aging phenotype of klotho-deficient mice, has been attributed to altered vitamin D metabolism, but alternative possibilities exist. We hypothesized that failed tubular Ca(2+) absorption is primary, which causes increased urinary Ca(2+) excretion, leading to elevated 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] and its sequelae. Here, we assessed intestinal Ca(2+) absorption, bone densitometry, renal Ca(2+) excretion, and renal morphology via energy-dispersive x-ray microanalysis in wild-type and klotho(-/-) mice. We observed elevated serum Ca(2+) and fractional excretion of Ca(2+) (FE(Ca)) in klotho(-/-) mice. Klotho(-/-) mice also showed intestinal Ca(2+) hyperabsorption, osteopenia, and renal precipitation of calcium-phosphate. Duodenal mRNA levels of transient receptor potential vanilloid 6 (TRPV6) and calbindin-D(9K) increased. In the kidney, klotho(-/-) mice exhibited increased expression of TRPV5 and decreased expression of the sodium/calcium exchanger (NCX1) and calbindin-D(28K), implying a failure to absorb Ca(2+) through the distal convoluted tubule/connecting tubule (DCT/CNT) via TRPV5. Gene and protein expression of the vitamin D receptor (VDR), 25-hydroxyvitamin D-1-alpha-hydroxylase (1alphaOHase), and calbindin-D(9K) excluded renal vitamin D resistance. By modulating the diet, we showed that the renal Ca(2+) wasting was not secondary to hypercalcemia and/or hypervitaminosis D. In summary, these findings illustrate a primary defect in tubular Ca(2+) handling that contributes to the precipitation of calcium-phosphate in DCT/CNT. This highlights the importance of klotho to the prevention of renal Ca(2+) loss, secondary hypervitaminosis D, osteopenia, and nephrocalcinosis.
منابع مشابه
Soluble α-Klotho Serum Levels in Chronic Kidney Disease
Transmembrane α-Klotho (TM-Klotho), expressed in renal tubules, is a cofactor for FGF23-receptor. Circulating soluble-α-Klotho (s-Klotho) results from TM-Klotho shedding and acts on Phosphate (P) and Calcium (Ca) tubular transport. Decreased TM-Klotho, described in experimental chronic kidney disease (CKD), prevents actions of FGF23 and lessens circulating s-Klotho. Thus, levels of s-Klotho cou...
متن کاملKlotho preservation via histone deacetylase inhibition attenuates chronic kidney disease-associated bone injury in mice
Bone loss and increased fracture are the devastating outcomes of chronic kidney disease-mineral and bone disorder (CKD-MBD) resulting from Klotho deficit-related mineral disturbance and hyperparathyroidism. Because Klotho down-regulation after renal injury is presumably affected by aberrant histone deacetylase (HDAC) activities, here we assess whether HDAC inhibition prevents Klotho loss and at...
متن کاملDehydration: a new modulator of klotho expression.
ACCORDING TO THE GREEK MYTHS, life and death of all individuals are in the hands of three sister goddesses: Klotho, Lakhesis, and Atropos. The first spins the thread of life, the second determines the length of the thread, while the last cuts the thread. Following this credence, once a putative agesuppressing gene has been identified, it was named klotho (11). Mice lacking klotho have a syndrom...
متن کاملRhein reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal fibrosis in mice
Renal fibrosis is the hallmark of chronic kidney diseases (CKD) and its development and progression are significantly affected by epigenetic modifications. Rhein, a plant-derived anthraquinone, displays strong anti-fibrosis properties, but its protective mode of action remains incompletely understood. Here we explore the mechanism of Rhein anti-renal fibrosis by investigating its regulation of ...
متن کاملTargeted deletion of Klotho in kidney distal tubule disrupts mineral metabolism.
Renal Klotho controls mineral metabolism by directly modulating tubular reabsorption of phosphate and calcium and by acting as a co-receptor for the phosphaturic and vitamin D-regulating hormone fibroblast growth factor-23 (FGF23). Klotho null mice have a markedly abnormal phenotype. We sought to determine effects of renal-specific and partial deletion of Klotho to facilitate investigation of i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 20 11 شماره
صفحات -
تاریخ انتشار 2009